Using a "DSP-free" design for VOIP-enabled end-points
While ever-increasing volume demands help to drive some economies of scale, OEMs and ODMs are also looking to minimize product costs without sacrificing features or call quality.
VoIP end-points have been traditionally designed using a “tandem processor” architecture, which includes both a general-purpose applications processor and a DSP (Figure 1). The DSP handles the packet voice processing (voice encode/decode, tone generation and detection, echo cancellation, noise reduction, etc.), while the applications processor manages the VoIP call control protocol and user interface. This architecture has a number of drawbacks when attempting to address the design requirements of high-volume, low-cost VoIP end-points. For example: the need for both an applications processor and a DSP adds cost to the overall product; two discrete devices have a larger footprint than a single device; and the tandem processor architecture increases the overall power consumption.
Related Articles
- Cutting Costs But Not Performance for VoIP-Enabled End-Points
- DSP-Free, WiFi Handset Could Unlock VoIP Market
- Free the Gadgets "Wireless Charging"
- Sensor Interface - Analogue Front End Family "From the Real World to the Digital Word"
- Three Major Inflection Points for Sourcing Bluetooth Intellectual Property
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
E-mail This Article | Printer-Friendly Page |