How to exploit 17 tried and true DSP power optimization techniques for wireless applications

Code size, speed and power consumption all have a significant impact on the the system-level product that integrates a DSP. The more power an embedded application consumes, for example, the larger the battery or fan required to drive it.
To reduce power, an application must run in as few cycles as possible because each cycle consumes a measurable amount of energy. In this sense, performance and power optimization are similar�using the least number of cycles is an excellent way to meet both performance and power optimization goals.
Although performance and power optimization strategies may share a similar goal, there are subtle differences in how those goals are achieved. This article will explore those differences from the perspective of wireless system design and it will discuss the resulting strategies.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
Related Articles
- Reducing Power Hot Spots through RTL optimization techniques
- Integration of power:communication interfaces in smart true wireless headset designs
- How Low Can You Go? Pushing the Limits of Transistors - Deep Low Voltage Enablement of Embedded Memories and Logic Libraries to Achieve Extreme Low Power
- Paving the way for the next generation of audio codec for True Wireless Stereo (TWS) applications - PART 5 : Cutting time to market in a safe and timely manner
- How NoCs ace power management and functional safety in SoCs
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow