Maximizing performance in FPGA systems
(01/02/2006 10:00 AM EST)
EE Times
With programmable hard intellectual property like DSP building blocks, serdes and embedded processors, FPGAs have become complex systems-on-chip. As a result, extracting higher performance involves far more than just cranking up the fabric clock rate. Typically, one must balance a complex set of requirements-I/O bandwidth, hardware logic and/or embedded-processing performance.
Harnessing built-in FPGA features for maximum performance also takes the right combination of design techniques. Tool settings are needed that optimally implement the functional description as written in RTL code. Each phase of design development, synthesis and implementation is critical.
System architecture must be considered for effective trade-offs between programmable hardware resources. With the architecture defined and RTL code ready, synthesis tools assign the design's basic conceptual building blocks to technology cells.
E-mail This Article | Printer-Friendly Page |
Related Articles
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)