How to speed FPGA debug with measurement cores and a mixed-signal oscilloscope
By Brad Frieden, Agilent
June 28, 2006 - pldesignline.com
Today's digital designs often find significant portions of their functionality implemented with FPGAs. When debugging such systems, one challenge can be gaining the necessary visibility to key signals inside the FPGAs, since there is usually a significant pressure to minimize the use of FPGA pins for debug, rather than for the design. Often in debug, there's also the need to view both internal FPGA functional signals, like state machines, while also carefully viewing timing and signal integrity characteristics of digital signals on the FPGA interface as it connects to the rest of the system. The latter is typically looked at with digitizing oscilloscopes. In this article, we will look at an approach that allows the combination of these measurements through the use of an Agilent mixed signal oscilloscope (MSO) in conjunction with an application add-in called the FPGA Dynamic Probe.
E-mail This Article | Printer-Friendly Page |
Related Articles
New Articles
- Hardware-Assisted Verification: The Real Story Behind Capacity
- Bigger Chips, More IPs, and Mounting Challenges in Addressing the Growing Complexity of SoC Design
- SoC design: What's next for NoCs?
- How to Save Time and Improve Communication Between Semiconductor Design and Verification Engineers
- Synopsys Foundation IP Enabling Low-Power AI Processors
Most Popular
- System Verilog Assertions Simplified
- Hardware-Assisted Verification: The Real Story Behind Capacity
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- I2C Interface Timing Specifications and Constraints