5V Library for Generic I/O and ESD Applications TSMC 12NM FFC/FFC+
How to speed FPGA debug with measurement cores and a mixed-signal oscilloscope
By Brad Frieden, Agilent
June 28, 2006 - pldesignline.com
Today's digital designs often find significant portions of their functionality implemented with FPGAs. When debugging such systems, one challenge can be gaining the necessary visibility to key signals inside the FPGAs, since there is usually a significant pressure to minimize the use of FPGA pins for debug, rather than for the design. Often in debug, there's also the need to view both internal FPGA functional signals, like state machines, while also carefully viewing timing and signal integrity characteristics of digital signals on the FPGA interface as it connects to the rest of the system. The latter is typically looked at with digitizing oscilloscopes. In this article, we will look at an approach that allows the combination of these measurements through the use of an Agilent mixed signal oscilloscope (MSO) in conjunction with an application add-in called the FPGA Dynamic Probe.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
Related Articles
New Articles
- Beyond Limits: Unleashing the 10.7 Gbps LPDDR5X Subsystem
- How to Design Secure SoCs: Essential Security Features for Digital Designers
- System level on-chip monitoring and analytics with Tessent Embedded Analytics
- What tamper detection IP brings to SoC designs
- RISC-V in 2025: Progress, Challenges,and What's Next for Automotive & OpenHardware
Most Popular
- System Verilog Assertions Simplified
- Beyond Limits: Unleashing the 10.7 Gbps LPDDR5X Subsystem
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Optimizing Analog Layouts: Techniques for Effective Layout Matching
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)