Process Detector (For DVFS and monitoring process variation)
How to use the Trace Port on PowerPC 405 cores
By Brad Frieden, Agilent
Editor's note: In this fourth installment of a four-part series on debugging FPGA designs, author Brad Frieden explains how to use the Trace Port on PowerPC 405 processor cores embedded in FPGAs to provide visibility into the program flow.
See also:
Part 1: Using a core-assisted approach to accelerate the debug of FPGA-based DDR II interfaces.
Part 2: How to speed FPGA debug with measurement cores and a mixed-signal oscilloscope
Part 3: Fast insight into MicroBlaze-based FPGA designs with the MicroBlaze Trace Core (MTC).
Common today is the use of one or more embedded processor cores in FPGA-based digital designs. Cost and integration are both reasons to move away from the use of a separate microprocessor chip. This is especially true given new tools that enable easy debug of systems with certain embedded processors. Take, for example, the Xilinx Virtex II Pro and Virtex 4 families of FPGAs, which offer embedded IBM PowerPC 405 processors with a built in "Trace Port." When used in conjunction with an IBM 405 Trace Port inverse assembler on a logic analyzer, this port allows the user to minimize the number of pins required on their FPGA while still providing visibility of program flow on the embedded microprocessor. Without the use of the Trace Port, this would require up to 50 signals to observe. Let's first consider how the Trace Port approach is possible, and we will then discuss the practical steps required in order to realize this kind of debug visibility.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
Related Articles
- How to Save Time and Improve Communication Between Semiconductor Design and Verification Engineers
- Last-Time Buy Notifications For Your ASICs? How To Make the Most of It
- How to cost-efficiently add Ethernet switching to industrial devices
- How to Turbo Charge Your SoC's CPU(s)
- How control electronics can help scale quantum computers
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow