How to simplify switch-mode DC-DC converter design
September 27, 2006
Here are the tradeoffs of DC-DC converter design and what you can do to simplify your design.
The design trade-offs that must be addressed during the design of a DC-DC converter circuit are simplified by integrating the inductor into the power management device. This article focuses on the design issues that are simplified by including an integrated inductor optimized for a range of electrical and layout applications as part of the power management solution. The inductor design is considered particularly troublesome since its design can affect performance relative to efficiency, stability and EMI requirements as well as dictate circuit layout and overall footprint. Finally, integration of the inductor guarantees system performance that yields a more turn-key experience for system developers.
That Troublesome Inductor
DC-DC converter design has often been called an art more than a science. One key reason for this is the troublesome inductor. There are many aspects of the inductor that make it a difficult component with which to design. These include a lack of standards, temperature variability of key performance parameters, unpredictability of the thermal environment, and sensitivity to layout.
E-mail This Article | Printer-Friendly Page |
Related Articles
- PowerSoC solves switch-mode DCDC noise and space issues
- Understanding Efficiency of Switched Capacitor DC-DC Converters for Battery-Powered Applications
- How flash-based FPGAs simplify functional safety requirements
- Guide to Choosing the Best DCDC Converter for Your Application
- How to build a better DC/DC regulator using FPGAs
New Articles
- What is JESD204C? A quick glance at the standard
- Optimizing Power Efficiency in SOC with PVT Sensor-Assisted DVFS Technology
- Bandgap Reference (BGR) Circuit Design and Transient Analysis in 90nm VLSI Technology
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)