Hit performance goals with configurable processors
Update: Cadence Completes Acquisition of Tensilica (Apr 24, 2013)
By Steven Leibson, TensilicaOctober 17, 2006 -- dspdesignline.com
With mainstream DSPs, code must be hand-tuned using assembly code in order to meet performance goals. A more productive approach is to tailor the processor to the algorithm. This article explains why, using FFT, Viterbi, and MPEG4 examples.
For more than 30 years, the fixed-ISA (instruction set architecture) microprocessor has largely defined electronic system design. Similarly, single-chip DSPs have dominated DSP system design since they were introduced 20 years ago. Fixed-ISA processors have addressed application performance problems in two ways. The first approach has been to increase clock rate, mirroring the same trend in PC processors. If power dissipation is not important, rapidly escalating clock rates can go a long way towards force-fitting a particular processor to an application. The alternative approach for fixed-ISA processors is to provide more computational resources that operate in parallel so that the processor can perform more work per clock.
Designers of fixed-ISA microprocessors and DSPs attempt to develop architectures that are good at executing a wide range of algorithms, but not tailored to any specific application. This design approach can reduce clock-rate requirements, but it doesn't match the clock-rate or gate-usage efficiencies of a tailored solution. The design of complex portable and battery-powered processor-based systems increasingly calls for taking a different approach, one that more closely matches the processing resources to the application tasks so that very high clock rates (and correspondingly high power and heat dissipations) are not required. FPGA, ASIC and SOC technologies provide an ideal medium for tailoring processors to specific applications, using newly available configurable and extensible processor technology.
E-mail This Article | Printer-Friendly Page |
|
Related Articles
- Using edge AI processors to boost embedded AI performance
- Meeting Increasing Performance Requirements in Embedded Applications with Scalable Multicore Processors
- Optimizing performance, power, and area in SoC designs using MIPS multi-threaded processors
- Performance Evaluation of Inter-Processor Communication Mechanisms on the Multi-Core Processors using a Reconfigurable Device
- Evaluating the performance of multi-core processors - Part 2
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)