How to implement high-speed 667 Mbps DDR2 interfaces with FPGAs
December 05, 2006
To achieve a robust high data rate, such as 667 Mbps in a DDR2 system, a dynamic auto-calibration PHY IP core significantly simplifies the memory interface design.
DDR2 is the second generation of double data rate (DDR) synchronous dynamic random access memory (SDRAM) capable of significantly higher data bandwidth. DDR2 improvements include lower power consumption, improved signal quality, and on-die termination schemes. Compared to the previous generation single data rate (SDR) SDRAM memories, DDR2 SDRAM memories transfer data on every edge of the clock, use the SSTL18 class II I/O standard with memories from up to 4 Gbits of data, and is widely available as modules such as dual in-line memory modules (DIMMs) or as components.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Altera Hot IP
Related Articles
- How to use FPGAs to implement high-speed RLDRAM II interfaces
- How to cut power consumption for high-speed apps with A/D converter architecture
- Common I/O design strategies for high-speed interfaces
- How to implement a high-definition video design framework for FPGAs
- The RapidIO High-Speed Interconnect: A Technical Overview
New Articles
- What tamper detection IP brings to SoC designs
- RISC-V in 2025: Progress, Challenges,and What's Next for Automotive & OpenHardware
- Understanding MACsec and Its Integration
- Discover new Tessent UltraSight-V from Siemens EDA, and accelerate your RISC-V development.
- The Critical Factors of a High-performance Audio Codec - What Chip Designers Need to Know
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- RISC-V in 2025: Progress, Challenges,and What's Next for Automotive & OpenHardware
- Congestion & Timing Optimization Techniques at 7nm Design
- Optimizing Analog Layouts: Techniques for Effective Layout Matching