7 µW always on Audio feature extraction with filter banks on TSMC 22nm uLL
FPGA-to-ASIC integration provides flexibility in automotive microcontrollers
The primary benefit of using MCUs has been high level system integration combined with relatively low cost. However, there are hidden costs associated with these devices well beyond the unit price.
The widely applied microcontroller in automotive electronics is heading full-speed at a wall of time and cost. The primary benefit of using microcontrollers (MCUs) has been high level system integration combined with relatively low cost. However, there are hidden costs associated with these devices well beyond the unit price. For example, if the chosen part does not have just the right mix of features, it must be augmented with external logic, software, or other integrated devices.
Further, with rapidly changing end-market requirements far more common in today's automotive sector, MCUs often become quickly unavailable. Many MCUs equipped with specialized features and a fixed number of dedicated interfaces do not fulfill market requirements after a short evaluation period. Consequently, system suppliers are being forced to redesign their hardware and re-write associated software, in some cases even having to change the processor core.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Altera Hot IP
Related Articles
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow