FPGAs vs. DSPs: A look at the unanswered questions
BDTI looks at the open questions about FPGAs' performance, cost, power, and ease of development. It also explains why FPGAs might benefit from the move to deep-submicron processes.
BDTI recently completed an in-depth analysis of FPGAs' suitability for DSP applications. We found that, in some high-performance signal processing applications, FPGAs have several significant advantages over high-end DSP processors. Our recent benchmark results (shown in Figure 1), for example, have shown that high-end, DSP-oriented FPGAs have a huge throughput advantage over high-performance DSP processors for certain types of signal processing. And FPGAs, which are not constrained by a specific instruction set or hardwired processing units, are much more flexible than processors.
If market success were based solely on throughput or flexibility, FPGAs would appear to be on the verge of taking over the DSP market; in fact, according to a recent report from market research firm Forward Concepts, in 2005 Altera and Xilinx each had DSP FPGA revenues in excess of $200 million, selling more non-cell-phone DSP silicon than Freescale and Agere.
But of course, it's not that simple. Development effort, energy efficiency, cost-effectiveness, staff expertise, and market inertia (among other attributes) will all play a role in determining whether FPGAs become a dominant technology for DSP systems.
In this article, we'll share some of the key open questions that we've identified during the course of our analysis. These factors will affect FPGAs' success in DSP markets, and will be of significant interest to system designers who are considering using FPGAs in their signal processing systems.
E-mail This Article | Printer-Friendly Page |
Related Articles
New Articles
- Accelerating RISC-V development with Tessent UltraSight-V
- Automotive Ethernet Security Using MACsec
- What is JESD204C? A quick glance at the standard
- Optimizing Power Efficiency in SOC with PVT Sensor-Assisted DVFS Technology
- Bandgap Reference (BGR) Circuit Design and Transient Analysis in 90nm VLSI Technology
Most Popular
- Accelerating RISC-V development with Tessent UltraSight-V
- System Verilog Assertions Simplified
- Synthesis Methodology & Netlist Qualification
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)