Demystifying ESL for embedded systems designs
Mar 1 2007 (1:00 AM) -- Embedded Systems Design
While the definitions of ESL may vary, the end result should be the same, namely letting system developers analyze their designs at a higher level of abstraction.
A recent Google search on "electronic system level" yielded more than 86,900 results (and growing daily), quickly demonstrating how much information is available on this topic. But despite the abundance of buzz, it's not always easy to find a clearcut explanation of what this design method encompasses and how it applies to embedded systems design. From the broadest perspective, electronic system level (ESL) design consists of tools and methods that enable designers to describe and analyze ICs at a high level of abstraction.
This original definition was targeted at high-end chip designers. If you look at a concept introduced by Wired's Editor in Chief Chris Anderson called "the long tail," these high-end applications fit into the "head" as more high-volume and vertical applications.1 This concept is visualized in Figure 1.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
Related Articles
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow