Analog and Mixed-Signal Connectivity IP at 65nm and below
The demand for connectivity intellectual property (IP) for high-speed serial busses such as USB 2.0, PCI Express®, SATA, DDR2 and HDMI is increasing as these standard interfaces are included in SoCs designed for applications such as single chip recordable DVD CODEC's and MP3 players. In order to stretch battery life of these SoCs, the semiconductor technologies require ultra-low power derivatives of high-performance logic manufacturing processes that enable production of very low-power SoCs for these mobile platforms and small form-factor devices. Today, many of these SoCs are manufactured in 90nm process nodes, and the ramp for 65nm design starts has been more aggressive than expected. The 45nm process design is following close behind, with early versions of design rules and process parameters already available.
The challenge from the IP provider's viewpoint is to meet analog performance in a technology that has been targeted for densely packed digital logic. From the SoC integrator's perspective, the IP should be easy to integrate. The IP provider should have already dealt all of the details of creating the IP. The IP should also incorporate new circuit design techniques that accommodate lower supply voltages necessary for portable systems. At the smaller process nodes, design for manufacturing (DFM) must also be taken into account.
Creating IP at 65nm and Below
Reduced supply voltages mean that architectures that once worked at 3.3 V or 2.5 V now need to work at 1.8 V or lower, without any loss in performance. One way to address this is to use a mixture of high voltage I/O devices with the lower voltage core devices. This will be discussed in the next section. In addition, all the post processing to support DFM requirements increases the performance variation in these devices. This is due to effects like shallow-trench isolation (STI) induced stress, (NMOS becomes slower and the PMOS faster) nwell proximity effects, contact stress and phase shift mask correction algorithms. There is also a time-dependent variation due to negative bias temperature instability (NBTI) in PMOS devices and hot carrier injection (HCI) in NMOS devices.
E-mail This Article | Printer-Friendly Page |
|
Synopsys, Inc. Hot IP
Related Articles
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)