Floating- to fixed-point MATLAB algorithm conversion for FPGAs
June 04, 2007 -- dspdesignline.com
In a recent survey conducted by AccelChip Inc. (recently acquired by Xilinx), 53% of the respondents identified floating- to fixed-point conversion as the most difficult aspect of implementing an algorithm on an FPGA (Figure 1).
Figure 1. AccelChip DSP design challenges survey.
Although MATLAB is a powerful algorithm development tool, many of its benefits are reduced during the fixed-point conversion process. For example, new mathematical errors are introduced into the algorithm because of the reduced precision of the fixed-point arithmetic. You must rewrite code to replace high-level functions and operators with low-level models that reflect the actual hardware macro-architecture. And simulation run times can be as much as 50 times longer. For these reasons, MATLAB, the overwhelming choice for algorithm development, is often abandoned in favor of C/C++ for fixed-point modeling.
E-mail This Article | Printer-Friendly Page |
|
Xilinx, Inc. Hot IP
Related Articles
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)