An FPGA design flow for video imaging applications
July 03, 2007 -- pldesignline.com
FPGAs are increasingly being used in a variety of video and image processing applications, primarily due to the increased complexity and performance requirements that such applications demand. This article examines some of the challenges faced by designers who are implementing video applications in FPGAs and details how some of the tools provided by FPGA vendors can be used to alleviate key design challenges. To better understand these challenges, some of the trends driving the need for ever higher performance and thereby FPGA usage in video applications will be explored.
Trends driving video applications to FPGAs
FPGAs are the ideal platform for implementing digital signal processing (DSP) algorithms with high computational requirements (i.e. high performance), since the ability of an FPGA fabric to lay down multiply-accumulate (MAC) resources in parallel can enable DSP performance that is at least an order of magnitude higher than programmable digital signal processors (DSPs).
Two key trends dominate the video design landscape today that pushes the envelope of available DSP power. One is the move inexorably towards high definition (HD) in everything – from displays and surveillance cameras to medical and military imaging systems. Processing a frame of HD video is approximately 4× to 6× the amount of data being processed when compared to a simple definition (SD) frame. This increased need for high definition data processing is driving video applications into higher performance platforms such as FPGAs.
E-mail This Article | Printer-Friendly Page |
Related Articles
- Optimize data flow video apps by tightly coupling ARM-based CPUs to FPGA fabrics
- Generating High Speed CSI2 Video by an FPGA
- Ultra HD H.264 Video Codec IP solution on Zynq FPGA
- How FPGAs are breathing new life into the analog video format
- Medical imaging process accelerated in FPGA 82X faster than software
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)