ICE-IP-338 High-speed XTS-GCM Multi Stream Inline Cipher Engine
Using FPGAs for advanced collision avoidance systems
(10/03/2007 12:15 PM EDT) -- EE Times
Electronic safety systems are now commonplace among automotive applications. In most countries, the law mandates restraint systems, such as air bags and seat and harness belts. Far from being an expensive afterthought, safety systems are, in many cases, now a primary selling feature of a vehicle or brand. Safety features take many forms, and new safety features are in fact increasingly concerned with driver assistance and awareness. Whereas airbags, which may save a life or minimize bodily harm in an accident or collision, have been in use for some time, a new generation of safety systems focuses on solutions designed to prevent collisions altogether. In fact, one of the most progressive areas of prophylactic system development and deployment is collision avoidance.
Currently in development are several main collision-avoidance systems for passenger-car applications grouped into either passive or active safety systems. Passive systems include driver-assisted solutions such as backup or side-looking blind-spot detection. Active systems, on the other hand, include, among other things, automatic-assisted braking systems. In short, the automobiles produced today are deploying the latest in safety technology features, both passive and active.
Automotive electronics designers are increasingly turning to nonvolatile, flash-based, field-programmable gate arrays (FPGAs) to meet their needs and replace the costly and complex application-specific integrated circuit (ASIC) technologies that have traditionally been used. Until now, ASICs had to be leveraged because they represented the only way to get the low power, reliability and endurance needed for the most demanding automotive systems, such as under the hood and safety applications. These applications have stringent requirements for extended temperature tolerance, high reliability, firm-error immunity and low power, far exceeding the flexibility, low-cost and rapid time-to-market advantages required by in-cabin telematics and infotainment automotive applications.
Sophisticated automotive systems rely on logic for real-time decision-making related to passive and active systems. Firm-error immunity is fundamental to the logic used in these critical safety systems. In actuality, automotive design engineers have long sought an alternative to the lengthy development cycles of sometimes-risky MCU and ASIC solutions.
E-mail This Article | Printer-Friendly Page |
|
Microsemi Hot IP
Related Articles
- Transitioning to Advanced Verification Techniques for FPGAs - Catch-22?
- Advanced Packaging and Chiplets Can Be for Everyone
- Why Transceiver-Rich FPGAs Are Suitable for Vehicle Infotainment System Designs
- Optimal OTP for Advanced Node and Emerging Applications
- Advanced Topics in FinFET Back-End Layout, Analog Techniques, and Design Tools
New Articles
- Accelerating RISC-V development with Tessent UltraSight-V
- Automotive Ethernet Security Using MACsec
- What is JESD204C? A quick glance at the standard
- Optimizing Power Efficiency in SOC with PVT Sensor-Assisted DVFS Technology
- Bandgap Reference (BGR) Circuit Design and Transient Analysis in 90nm VLSI Technology
Most Popular
- Accelerating RISC-V development with Tessent UltraSight-V
- System Verilog Assertions Simplified
- Synthesis Methodology & Netlist Qualification
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)