OCP SoC instrumentation solutions involve more than just trace
By Neal Stollon, HDL Dynamics
(11/17/07, 02:00:00 PM EST) -- Embedded.com
On-chip analysis can effectively improve our understanding of complex embedded systems, such as Open Core Protocol (OCP)-based architectures. OCP is a standards-based embedded-bus interface and multicore IP integration protocol defined by the OCP-IP industry consortium. For OCP level systems integration, real-time performance analysis is often a priority for getting products to market quickly, and embedded instrumentation analysis that can be used with emulators, prototypes, and production silicon can provide systems information and control that go beyond simulation based analysis
System On-Chip Instrumentation (System OCI) is an intellectual- property (IP) subsystem that gives designers the ability to control, trace, and debug embedded signals in a way that provides visibility into system interfaces and operations. System OCI typically works with processor-specific run-control and trace interfaces and other IP debugging systems to provide a comprehensive view of the on-chip operations. The on-chip systems analysis also enables systems designers to optimize the performance of multicycle operations for an OCP interface and the global subsystem of shared interfaces and peripherals.
In complex system architectures, designers always face tradeoffs that effect architecture initialization, stalling and deadlocking, transmission efficiency, latency, saturation, resource conflicts, and other bus operations, all of which can have a direct impact on the performance and overall system operation. Analysis at this level requires visibility and control of key signals, both to configure the OCP parameters and to determine if the result is meeting the system requirements. For embedded OCP interfaces, the instrumentation must allow adequate bus-signal visibility, without halting or impacting system operations and allow modification of parameters directly and simply.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
Related Articles
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- An Outline of the Semiconductor Chip Design Flow
- Design Rule Checks (DRC) - A Practical View for 28nm Technology
- Synthesis Methodology & Netlist Qualification