Bluetooth low energy v6.0 Baseband Controller, Protocol Software Stack and Profiles IP
Using nextgen PCI Express switches to eliminate network I/O bottlenecks
(02/06/08, 03:43:00 PM EST) -- Embedded.com
Controllers in today's network-connected embedded systems often are overwhelmed by the data streaming to and from the various I/O sources; it can be difficult for the system's root complex to absorb high-speed bursty traffic such as 10Gig Ethernet when it competes with very fast streaming data from sources such as InfiniBand and Fibre Channel (FC) storage elements.
For example, when a few bytes of Ethernet data get stuck behind large packets of FC data in the root complex, the latency that is introduced by this congestion will severely impact system response time and create bandwidth limitations (see Table 1 below).
Table 1. Ethernet latency bandwidth tradeoffs
The next generation of PCI Express (PCIe) switches have added many new features to mitigate the effects of having to process competing data protocols, thereby improving overall system performance.
Advanced new features such as Read Pacing, enhanced port configuration flexibility, dynamic buffer memory allocation, and the deployment of PCIe Gen2 signaling are reducing I/O bottlenecks, providing dramatic improvements in system performance in server and storage controllers.
E-mail This Article | Printer-Friendly Page |
Related Articles
New Articles
- Accelerating RISC-V development with Tessent UltraSight-V
- Automotive Ethernet Security Using MACsec
- What is JESD204C? A quick glance at the standard
- Optimizing Power Efficiency in SOC with PVT Sensor-Assisted DVFS Technology
- Bandgap Reference (BGR) Circuit Design and Transient Analysis in 90nm VLSI Technology
Most Popular
- System Verilog Assertions Simplified
- Accelerating RISC-V development with Tessent UltraSight-V
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Understanding Logic Equivalence Check (LEC) Flow and Its Challenges and Proposed Solution
- Design Rule Checks (DRC) - A Practical View for 28nm Technology