TI's MSP430 vs. ST Microelectronics' ARM Cortex-based processor for battery-powered apps
(02/26/08, 01:23:00 AM EST) -- Embedded.com
I recently conducted a tradeoff study (see Table 1) on several 16 and 32-bit low-power microprocessors for a handheld device in the biotech industry. There are four key areas of concern: power/current consumption, physical package size, cost, and compiler/firmware support. Texas Instrument's low-power 16-bit MSP430 family has traditionally been a first choice for this sort of application. The Renesas family of 16-bit micros is competitive with the MSP430 in pricing but does not beat the MSP in power consumption. However, the new ARM Cortex offering from ST Microelectronics, is the first chip on the market giving TI a serious run for its MSP money.
E-mail This Article | Printer-Friendly Page |
Related Articles
- Is Intel within ARM's reach? Pedestrian Detection shows the way
- A developer's insight into ARM Cortex M debugging
- Implementing a processor-independent, battery-powered wireless mesh network
- ARM Cortex-R4, A mid-range processor for deeply-embedded applications
- Maven Silicon's RISC-V Processor IP Verification Flow
New Articles
- Accelerating RISC-V development with Tessent UltraSight-V
- Automotive Ethernet Security Using MACsec
- What is JESD204C? A quick glance at the standard
- Optimizing Power Efficiency in SOC with PVT Sensor-Assisted DVFS Technology
- Bandgap Reference (BGR) Circuit Design and Transient Analysis in 90nm VLSI Technology
Most Popular
- System Verilog Assertions Simplified
- Accelerating RISC-V development with Tessent UltraSight-V
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Understanding Logic Equivalence Check (LEC) Flow and Its Challenges and Proposed Solution
- Design Rule Checks (DRC) - A Practical View for 28nm Technology