ICE-IP-338 High-speed XTS-GCM Multi Stream Inline Cipher Engine
ESL Methods for Optimizing a Multi-media Phone Chip
May 27, 2008 -- edadesignline.com
Our team is chartered to validate and optimize the architecture of our NXP mobile phone chips. This is a very challenging application domain, as an ever increasing set of multi-media and wireless communication functions need to be integrated into one SoC. Next to a growing number of communication standards, today's mobile phones support a large variety of multi-media applications like MP3 audio, video recording and playback, and digital still camera.
The trend towards high-quality multimedia content and higher communication bandwidth drastically increases the complexity of the underlying SoC architecture. In previous designs a single application processor was sufficient to run the rather simple phone software and to control the modem subsystem. Today numerous dedicated IP blocks are necessary to perform the multimedia functions with the required performance and energy efficiency.
1. Block diagram of a multi-media mobile phone.
The high-level block-diagram of the multi-media subsystem of a mobile phone is depicted in Figure 1. The four components on the top are initiators on the bus, whereas the multi-port memory controller is a target.
E-mail This Article | Printer-Friendly Page |
|
NXP Hot IP
Related Articles
- Optimizing embedded software for real-time multimedia processing
- Integrating a Multi-Vendor ESL-to-Silicon Design Flow Using SPIRIT
- Selecting the right media processor for networked multimedia designs
- Choosing between dual and single core media processor configurations in embedded multimedia designs
- Optimizing multimedia software for consumer products
New Articles
- Accelerating RISC-V development with Tessent UltraSight-V
- Automotive Ethernet Security Using MACsec
- What is JESD204C? A quick glance at the standard
- Optimizing Power Efficiency in SOC with PVT Sensor-Assisted DVFS Technology
- Bandgap Reference (BGR) Circuit Design and Transient Analysis in 90nm VLSI Technology