Implementation of the AES algorithm on Deeply Pipelined DSP/RISC Processor
Embedded.com (08/19/08, 02:18:00 PM EDT)
In the modern digital computer world, cryptography algorithms play an important role in securing important data. In early days, cryptography was used to protect classified information in government and military applications. Now, with Internet access is a common commodity, government agencies, various industries ranging from Hollywood to corporate, financial institutions and universities make widespread use of cryptography algorithms in everything from storage management to web based online transaction processing, etc.
Various cryptography algorithms are used in practice, depending on the application type and the required level of security. The block diagram of a general secured communication system is shown in Figure 1 below.
Figure 1: Communication security modules (a) encryption (b) decryption
For communications security, plan text is encrypted using a secret (or shared) key at the transmitter side and then decrypting the ciphered text at the receiver side using the same key. In this secured communication system, tapping the data by adversaries is almost impossible unless he/she gets the secret key pattern. In the present day, an embedded processor is commonly used to implement the physical layer of such a secured communication system.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
Related Articles
- Writing a modular Audio Post Processing DSP algorithm
- An 800 Mpixels/s, ~260 LUTs Implementation of the QOI Lossless Image Compression Algorithm and its Improvement through Hilbert Scanning
- AES 256 algorithm towards Data Security in Edge Computing Environment
- Designing an Efficient DSP Solution: Choosing the Right Processor and Software Development Toolchain
- Performance analysis of 8-bit pipelined Asynchronous Processor core
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow