ICE-IP-338 High-speed XTS-GCM Multi Stream Inline Cipher Engine
Use open loop analysis to model power converters with multiple feedback paths
By Christopher Basso, Nicolas Cyr and Stephanie Conseil from ON Semiconductor Corp.
automotivedesignline.com (December 17, 2008)
Loop stability analysis usually starts from an open-loop Bode plot of the plant under study such as the power stage of a buck or a flyback converter. In this situation, the designer can extract phase and gain data within the frequency range of interest.
The designer's job is to identify a compensator structure, which will lead to the selected crossover frequency affected by the right phase margin. The final step requires the study of the total loop gain, the power plant and the compensator, showing that the poles/zeros placed on the compensator ensure stability once the loop is closed.
If this operation is rather straightforward with single loops, the operation becomes more complicated with converters implementing weighted feedback. This article capitalizes on the work done with loop stability analysis techniques and explores different ways to apply the them to power converters featuring multiple feedback paths.
E-mail This Article | Printer-Friendly Page |
|
Related Articles
New Articles
- Accelerating RISC-V development with Tessent UltraSight-V
- Automotive Ethernet Security Using MACsec
- What is JESD204C? A quick glance at the standard
- Optimizing Power Efficiency in SOC with PVT Sensor-Assisted DVFS Technology
- Bandgap Reference (BGR) Circuit Design and Transient Analysis in 90nm VLSI Technology
Most Popular
- System Verilog Assertions Simplified
- Accelerating RISC-V development with Tessent UltraSight-V
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Understanding Logic Equivalence Check (LEC) Flow and Its Challenges and Proposed Solution
- Design Rule Checks (DRC) - A Practical View for 28nm Technology