ICE-IP-338 High-speed XTS-GCM Multi Stream Inline Cipher Engine
What you need to know about automated testing and simulation
Embedded.com Apr 14, 2009 (12:39 PM)
Wedding simulation with automated testing allows test organizations to achieve benefits such as increases in testing speed (through-put), increases in test coverage for both hardware and software, and the ability to test before hardware becomes available. In this article, we will describe each type of approach in turn and then how they can work together synergistically.
Simulation generally refers to a model of a process or function; for example, we can simulate the general behavior of a manufacturing process, a motor vehicle, or any other object for which we have knowledge about inputs, outputs, and behavior.
Both simulation and testing have specific goals. For simulation, we want to facilitate requirements generation, uncover unknown design interactions and details, and reduce development cost by having fewer actual parts.
Much of this activity facilitates testing in quantifying the requirements, making testing more productive (Figure 1, below). For testing, we want to achieve defect containment, reduced product warranty cost, and some level of statistical indication of design readiness.
Figure 1 Simulation Uses
E-mail This Article | Printer-Friendly Page |
Related Articles
New Articles
- Accelerating RISC-V development with Tessent UltraSight-V
- Automotive Ethernet Security Using MACsec
- What is JESD204C? A quick glance at the standard
- Optimizing Power Efficiency in SOC with PVT Sensor-Assisted DVFS Technology
- Bandgap Reference (BGR) Circuit Design and Transient Analysis in 90nm VLSI Technology
Most Popular
- Accelerating RISC-V development with Tessent UltraSight-V
- System Verilog Assertions Simplified
- Synthesis Methodology & Netlist Qualification
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)