NVM OTP NeoBit in Maxchip (180nm, 160nm, 150nm, 110nm, 90nm, 80nm)
Beefing up the Cortex-M3-based MCU to Handle 480 Mbps High-speed USB
Embedded.com (05/24/09, 02:34:00 AM EDT)
The universal serial bus (USB) has completely replaced UART, PS2, and IEEE-1284 parallel interfaces on PCs, and now is gaining wide acceptance in embedded applications. Most of the I/O devices (keyboards, scanners, mice) used with embedded systems are USB-based for good reason.
Since the USB is a well-defined standard that is guaranteed by the USB consortium, any USB-certified device from any vendor will work in a plug-and-play fashion with any USB-certified device from any other vendor.
Multiple devices can operate on the same bus without affecting each other at all. It is not at all surprising that the majority of 32-bit flash MCU and MPU vendors offer some form of USB interface as a standard peripheral: USB host, USB device, USB OTG " usually limited to the "full-speed" specification of 12 Mbps (Figure 1, below).
Figure 1. USB Block Diagram
Now, the USB standard is set to solve another issue for embedded systems: the exponential growth in data rates. Five years ago, a data rate of 10 Mbps was considered high. A 12 Mbps full-speed USB, 10 Mbps SPI or 400 kps I2C interface could cover the data requirements of nearly any embedded application.
E-mail This Article | Printer-Friendly Page |
|
Search Silicon IP
Related Articles
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)