Bluetooth low energy v6.0 Baseband Controller, Protocol Software Stack and Profiles IP
PRODUCT HOW-TO: Building an FPGA-based Digital Down Converter
Embedded.com (06/03/09, 06:37:00 AM EDT)
The digital downconverter (DDC) has become a cornerstone technology in communication systems. Similar to its analog receiver counterpart, the DDC provides the user with a means to tune and extract a frequency of interest from a broad radio spectrum.
Over the past few years, the functions associated with DDCs have seen a shift from being delivered in ASICs to operating as IP (intellectual property) in FPGAs.
For many applications, this implementation shift brings advantages such as design flexibility, higher precision processing, higher channel density, lower power and lower cost per channel. With the advent of each new higher performance FPGA family, these benefits continue to increase.
This article explores some of the key advantages of implementing DDC designs in FPGAs and describes some of the situations when ASICs can still offer the best solution.
E-mail This Article | Printer-Friendly Page |
|
Related Articles
- Building FPGA-based digital downconverters with graphical design tools
- PRODUCT HOW-TO: Debugging hardware designs with an FPGA-based emulation tool
- How to Reduce FPGA Logic Cell Usage by >x5 for Floating-Point FFTs
- FPGA constraints for the modern world: Product how-to
- Designing a high-definition FPGA-based graphics controller
New Articles
- Accelerating RISC-V development with Tessent UltraSight-V
- Automotive Ethernet Security Using MACsec
- What is JESD204C? A quick glance at the standard
- Optimizing Power Efficiency in SOC with PVT Sensor-Assisted DVFS Technology
- Bandgap Reference (BGR) Circuit Design and Transient Analysis in 90nm VLSI Technology
Most Popular
- System Verilog Assertions Simplified
- Accelerating RISC-V development with Tessent UltraSight-V
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Understanding Logic Equivalence Check (LEC) Flow and Its Challenges and Proposed Solution
- Design Rule Checks (DRC) - A Practical View for 28nm Technology