The virtual vehicle: making power management easier
By Thorsten Gerke, Synopsys
Due to the increase in vehicle comfort and safety features, there is a significant demand for more reliable electrical systems. An increasing number of vehicle electrical components require a greater amount of electrical power, which has to be ensured at all times. In order to effectively meet this challenge and enable early validation of the power network quality, vehicle manufacturers are now relying on simulation-based development methodologies.
In a modern automobile it is increasingly critical to balance sometimes competing power usage requirements, as well as regulate overall energy consumption. After turning off the combustion engine for instance, there must remain a sufficient amount of energy in the vehicle battery for the starter motor to re-start the engine.
Even when the engine is not running, some electricity is still being consumed, and a sufficient power supply must be ensured for this "sleep" mode, as well as for the active operation of the electrical network. The power supply must also be structured to avoid critical voltage drop-downs and compensate for voltage-drops as quickly as possible in active mode.
Today modern electrical networks leverage power management systems, which control the network and are responsible for electrical energy distribution. The intention is to make sure that power bottlenecks are addressed in an appropriate manner, which includes monitoring the on-board battery.
Simulation of power management strategies provides the best possible development tool for power network validation. The figure below illustrates a typical vehicle power network simulation.
E-mail This Article | Printer-Friendly Page |
|
Synopsys, Inc. Hot IP
Related Articles
- Power Management for Internet of Things (IoT) System on a Chip (SoC) Development
- Islands in the power management storm (by Barry Hoberman, President and CEO of Virtual Silicon)
- Calibrate and Configure your Power Management IC with NVM IP
- How NoCs ace power management and functional safety in SoCs
- Analog and Power Management Trends in ASIC and SoC Designs
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)