Picking the right MPSoC-based video architecture: Part 2
By Santanu Dutta, Jens Rennert, Tiehan Lv, Jiang Xu, Shengqi Yang, and Wayne Wolf
Embedded.com (08/18/09, 12:15:00 AM EDT)
For the ever increasing set of media-processing applications, improving the performance of the execution of a single instruction stream often results in only a limited overall gain in the system performance. Intuition and experiments suggest that for these applications, much better performance can be achieved by employing multiple processors that share the burden of controlling the necessary real-time and non-real-time tasks.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
Related Articles
- Picking the right MPSoC-based video architecture: Part 4
- Picking the right MPSoC-based video architecture: Part 3
- Picking the right MPSoC-based video architecture: Part 1
- Debugging FPGA-based video systems: Part 2
- Providing memory system and compiler support for MPSoc designs: Customization of memory architectures (Part 2)
New Articles
- Understanding MACsec and Its Integration
- Discover new Tessent UltraSight-V from Siemens EDA, and accelerate your RISC-V development.
- The Critical Factors of a High-performance Audio Codec - What Chip Designers Need to Know
- Density Management in Analog Layout Design: Addressing Issues and Ensuring Consistency
- Nexus: A Lightweight and Scalable Multi-Agent Framework for Complex Tasks Automation
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Synthesis Methodology & Netlist Qualification
- Discover new Tessent UltraSight-V from Siemens EDA, and accelerate your RISC-V development.
- Understanding Logic Equivalence Check (LEC) Flow and Its Challenges and Proposed Solution