Picking the right MPSoC-based video architecture: Part 4
By Santanu Dutta, Jens Rennert, Tiehan Lv, Jiang Xu, Shengqi Yang, and Wayne Wolf
Embedded.com (08/18/09, 11:21:00 PM EDT)
To provide some perspective on what we discussed in Part 1, Part 2, and Part 3, in this last part in this series, we will consider the important topic of characterization of applications and architectures.
To this end, trace-driven simulation is widely used to evaluate computer architectures and are useful in MPSoC design. Because we know more about the application code to be executed on an application-specific MPSoC design, we can use execution traces to refine the design, starting with capturing fairly general characteristics of the application and moving toward a more detailed study of the application running on a refined architectural model.
Because video applications are computationally intensive, we expect that more than one platform SoC will be necessary to build video systems for quite some time. For some relatively simple applications, it is possible to build a single platform that can support a wide variety of software.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
Related Articles
- Picking the right MPSoC-based video architecture: Part 3
- Picking the right MPSoC-based video architecture: Part 2
- Picking the right MPSoC-based video architecture: Part 1
- Picking the right 802.15.4/ZigBee wireless connection for your embedded design
- Paving the way for the next generation audio codec for TRUE Wireless Stereo (TWS) applications - PART 4 : Achieving the ultimate audio experience
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow