Picking the right MPSoC-based video architecture: Part 4
By Santanu Dutta, Jens Rennert, Tiehan Lv, Jiang Xu, Shengqi Yang, and Wayne Wolf
Embedded.com (08/18/09, 11:21:00 PM EDT)
To provide some perspective on what we discussed in Part 1, Part 2, and Part 3, in this last part in this series, we will consider the important topic of characterization of applications and architectures.
To this end, trace-driven simulation is widely used to evaluate computer architectures and are useful in MPSoC design. Because we know more about the application code to be executed on an application-specific MPSoC design, we can use execution traces to refine the design, starting with capturing fairly general characteristics of the application and moving toward a more detailed study of the application running on a refined architectural model.
Because video applications are computationally intensive, we expect that more than one platform SoC will be necessary to build video systems for quite some time. For some relatively simple applications, it is possible to build a single platform that can support a wide variety of software.
E-mail This Article | Printer-Friendly Page |
Related Articles
- Picking the right MPSoC-based video architecture: Part 3
- Picking the right MPSoC-based video architecture: Part 2
- Picking the right MPSoC-based video architecture: Part 1
- Picking the right 802.15.4/ZigBee wireless connection for your embedded design
- Paving the way for the next generation audio codec for TRUE Wireless Stereo (TWS) applications - PART 4 : Achieving the ultimate audio experience
New Articles
- Accelerating RISC-V development with Tessent UltraSight-V
- Automotive Ethernet Security Using MACsec
- What is JESD204C? A quick glance at the standard
- Optimizing Power Efficiency in SOC with PVT Sensor-Assisted DVFS Technology
- Bandgap Reference (BGR) Circuit Design and Transient Analysis in 90nm VLSI Technology
Most Popular
- System Verilog Assertions Simplified
- Accelerating RISC-V development with Tessent UltraSight-V
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Understanding Logic Equivalence Check (LEC) Flow and Its Challenges and Proposed Solution
- Design Rule Checks (DRC) - A Practical View for 28nm Technology