2-stage Power Amplifier 39GHz ultra-efficient Dual-Drive™ PA
Don't Let Metastability Cause Problems in Your FPGA-Based Design
By Jennifer Stephenson, Altera Corp.
pldesignline.com (September 29, 2009)
Metastability is a phenomenon that can cause system failure in digital devices such as FPGAs, when a signal is transferred between circuitry in asynchronous clock domains. This article describes metastability in FPGAs, explains why the phenomenon occurs, and discusses how it can cause design failures. The calculated mean time between failures (MTBF) due to metastability indicates whether designers should take steps to reduce the chance of such failures. This article also explains how MTBF is calculated from design and device parameters, and presents techniques to improve system reliability with increased MTBF.
E-mail This Article | Printer-Friendly Page |
|
Intel FPGA Hot IP
Related Articles
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- System Verilog Assertions Simplified
- Smart Tracking of SoC Verification Progress Using Synopsys' Hierarchical Verification Plan (HVP)
- Dynamic Memory Allocation and Fragmentation in C and C++
- Synthesis Methodology & Netlist Qualification