What next for microcontrollers?
Viewing the migration from 8- and 16-bit to 32-bit MCUs from the perspective of the ARM architecture
By Joseph Yiu, ARM
Embedded.com (01/05/10, 09:41:00 AM EST)
The embedded world is constantly changing. You might not have noticed, but if you take a minute to recall what a microcontroller system was like 10 years ago and compare it to today's latest microcontroller systems, you will find that PCB design, component packages, level of integration, clock speed, and memory size have all going through several generations of change.
One of the hottest topics in this area is when will the last of remaining 8-bit microcontroller users start to move away from legacy architectures and move to modern 32-bit processor architectures like the ARM Cortex-M based microcontroller family.
Over the last few years there has been a strong momentum of embedded developers starting the migration to 32-bit microcontrollers and, in this multi-part article, we will take a look at some of the factors accelerating this migration.
In the first part of this article we will summarize as to why embedded developers should consider moving to the 32-bit microcontrollers.
E-mail This Article | Printer-Friendly Page |
|
Arm Ltd Hot IP
Related Articles
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)