Low power LDPC decoder created using high level synthesis
By Yang Sun and Joseph R. Cavallaro, Rice University, Houston, Texas, Tai Ly, Synfora Inc., Mountain View, Calif.
edadesignline.com (January 13, 2010)
Introduction
With the popularity of mobile wireless devices soaring, the wireless communication market continues to see rapid growth. However, with this growth comes a significant challenge. Many applications, such as digital video, need new high data rate wireless communication algorithms. The continuous evolution of these wireless specifications is constantly widening the gap between wireless algorithmic innovation and hardware implementation. In addition, low power consumption is now a critical design issue, since the life of a battery is a key differentiator among consumer mobile devices. The chip designer's most important task is to implement highly complex algorithms into hardware as quickly as possible, while still retaining power efficiency. High Level Synthesis (HLS) methodology has already been widely adopted as the best way to meet the challenge. This article gives an example in which an HLS tool is used, together with architectural innovation, to create a low power LDPC decoder.
E-mail This Article | Printer-Friendly Page |
|
Related Articles
New Articles
- Accelerating RISC-V development with Tessent UltraSight-V
- Automotive Ethernet Security Using MACsec
- What is JESD204C? A quick glance at the standard
- Optimizing Power Efficiency in SOC with PVT Sensor-Assisted DVFS Technology
- Bandgap Reference (BGR) Circuit Design and Transient Analysis in 90nm VLSI Technology
Most Popular
- System Verilog Assertions Simplified
- Accelerating RISC-V development with Tessent UltraSight-V
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Understanding Logic Equivalence Check (LEC) Flow and Its Challenges and Proposed Solution
- Design Rule Checks (DRC) - A Practical View for 28nm Technology