A new approach to improving system performance
By Terry Costlow
Embedded.com (01/05/10, 08:20:00 PM EST)
Speed is a key element in most every electronic design. Whether engineers are creating complex image processing applications or designing systems that extend battery life by working swiftly before returning to sleep mode, speed is a critical factor in a product's success.
Though hardware usually gets first consideration when design teams look for ways to improve speed, that's not usually the most effective path. It's fairly straightforward to run the features and functions of a product faster without making any hardware changes.
Streamlining software so it runs at optimal rates can bring significant improvements in a way that's so easy to implement units in the field can be enhanced. That's far more cost effective than redesigning hardware.
Three of the four basic components in system speed are in software: operating systems, compilers and application software. Hardware is the critical fourth phase, but altering processors, memories, bus architectures and data channels is difficult.
Altering the operating system is also difficult once the OS has been selected. That leaves optimizing the software that runs above the operating system as the most straightforward way to increase speed. Applications packages, middleware and drivers take center stage when development teams focus on the features and functions that attract customers. But this software is typically overlooked when the focus shifts to performance.
That's a mistake. Significant performance increases can be achieved when acceleration techniques are applied to software that resides above the operating system. It's rare that speed can't be boosted by 20 percent (or even doubled or quadrupled) especially when utilizing an outside firm that specializes in software acceleration who can assist with streamlining programs.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
Related Articles
- Improving Performance and Verification of a System Through an Intelligent Testbench
- System Performance Analysis and Software Optimization Using a TLM Virtual Platform
- Improving Software Development and Verification Productivity Using Intellectual Property (IP) Based System Prototyping
- Out of the Verification Crisis: Improving RTL Quality
- Improving performance and security in IoT wearables
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow