NVM OTP NeoBit in Maxchip (180nm, 160nm, 150nm, 110nm, 90nm, 80nm)
Extreme Design: Realizing a single-chip CMOS 56 Gs/s ADC for 100 Gbps Ethernet
Ian Dedic, Fujitsu Microelectronics
8/25/2010 7:38 AM EDT
To provide a long-haul, 100-Gbps, optical transport network with maximum reach and immunity to optical fiber non-idealities, the industry has settled on dual-polarization quadrature phase-shift keying (DP-QPSK) as a modulation method, which means that a coherent receiver is required. The biggest implementation challenge resulting from this decision is the need for low-power ultra-high-speed ADCs, and their technology requirements define the way that such a receiver can be implemented.
A 100-Gbps coherent receiver needs four 56-Gs/s analog/digital converters (ADCs) and a tera-OPS DSP which dissipate only tens of watts. This paper discusses the forces pushing towards a single-chip CMOS solution, and the challenges in realizing this.
E-mail This Article | Printer-Friendly Page |
|
Related Articles
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)