Power-efficient SDR platform handles multimode 4G
Itay Lusky, Altair Semiconductor
9/11/2010 10:24 PM EDT
The mobile Internet era is spurring development of multiple 4G technologies; not just 3GPP-LTE, but other 4G standards, including Mobile WiMax 802.16e and Japanese XG-PHS, are gaining global footprints. The proliferation of multiple legacy 2G and 3G technologies magnifies the need for development of multimode devices, including chip sets that can process a variety of broadband technologies while handling high throughput at low power consumption.
The cellular market’s fragmentation raises the need for a programmable platform; indeed, development of a powerful yet power-efficient programmable platform is not a new idea. Not until now, however, have such platforms been both technologically feasible and cost-effective.
This article presents the fundamental concepts of 4G technologies; describes the challenges in developing an efficient 4G user equipment (UE) solution and explains why software-defined radio technology is an excellent means for implementing it efficiently; and describes a unique SDR architecture allowing a programmable, powerful yet power-efficient implementation.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Related Articles
- Capturing and communicating power-efficient design knowledge
- ESL 'ecosystem' enables power-efficient Application specific instruction processors (ASIPs)
- Design and evaluation of power-efficient SoCs
- Breaking new energy efficiency records with advanced power management platform
- Aircraft Jet Engine Failure Analytics Using Google Cloud Platform Based Deep Learning
New Articles
- What tamper detection IP brings to SoC designs
- RISC-V in 2025: Progress, Challenges,and What's Next for Automotive & OpenHardware
- Understanding MACsec and Its Integration
- Discover new Tessent UltraSight-V from Siemens EDA, and accelerate your RISC-V development.
- The Critical Factors of a High-performance Audio Codec - What Chip Designers Need to Know
Most Popular
- System Verilog Assertions Simplified
- Design Rule Checks (DRC) - A Practical View for 28nm Technology
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- A Heuristic Approach to Fix Design Rule Check (DRC) Violations in ASIC Designs @7nm FinFET Technology
- Synthesis Methodology & Netlist Qualification