Power-efficient SDR platform handles multimode 4G
Itay Lusky, Altair Semiconductor
9/11/2010 10:24 PM EDT
The mobile Internet era is spurring development of multiple 4G technologies; not just 3GPP-LTE, but other 4G standards, including Mobile WiMax 802.16e and Japanese XG-PHS, are gaining global footprints. The proliferation of multiple legacy 2G and 3G technologies magnifies the need for development of multimode devices, including chip sets that can process a variety of broadband technologies while handling high throughput at low power consumption.
The cellular market’s fragmentation raises the need for a programmable platform; indeed, development of a powerful yet power-efficient programmable platform is not a new idea. Not until now, however, have such platforms been both technologically feasible and cost-effective.
This article presents the fundamental concepts of 4G technologies; describes the challenges in developing an efficient 4G user equipment (UE) solution and explains why software-defined radio technology is an excellent means for implementing it efficiently; and describes a unique SDR architecture allowing a programmable, powerful yet power-efficient implementation.
E-mail This Article | Printer-Friendly Page |
|
Related Articles
- Capturing and communicating power-efficient design knowledge
- ESL 'ecosystem' enables power-efficient Application specific instruction processors (ASIPs)
- Design and evaluation of power-efficient SoCs
- Breaking new energy efficiency records with advanced power management platform
- Aircraft Jet Engine Failure Analytics Using Google Cloud Platform Based Deep Learning
New Articles
Most Popular
- Optimizing Power Efficiency in SOC with PVT Sensor-Assisted DVFS Technology
- Bandgap Reference (BGR) Circuit Design and Transient Analysis in 90nm VLSI Technology
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)