Free I/O: Improving FPGA clock distribution control
Kirk Jensen, Lattice Semiconductor
EETimes (1/23/2011 4:15 PM EST)
Clock signals in synchronous digital systems (such as those found in telecommunications) define when and how quickly data is moved through that system. A clock distribution network, consisting of multiple clock signals, distributes those signals from a shared point to all of the components in the system requiring clocked data. Because the clock signals perform a critical system function, it is clear that more attention should be given not only to the clock’s characteristics (i.e. Skew and Jitter), but also to the components that comprise the clock distribution network.
FPGA development teams are consistently challenged by overly burdensome, complex clock networks. Various factors, including increasing demand for I/O, cost reduction opportunities and the need to reduce PCB design changes, are forcing another look at those clock networks. This article examines FPGA clock distribution control challenges that are motivating development teams to change the way they design, and offers practical advice for designers who are considering ways to enable additional FPGA I/O, or improve clock network performance, by reducing the size of their clock distribution network.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Related Articles
- Improving USB 3.0 with better I/O management
- Solving FPGA I/O pin assignment challenges
- A Reconfigurable System featuring Dynamically Extensible Embedded Microprocessor, FPGA and Customisable I/O
- Asynchronous reset synchronization and distribution - ASICs and FPGAs
- Hitless I/O: Overcoming challenges in high availability systems
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow