Major changes expected for physical verification tools as designs move into 28nm and below
Vlad Marchuk, CTO and founder, PolytEDA Software Corp.
EETimes (3/8/2011 6:05 AM EST)
The semiconductor industry continues to shrink process technologies to geometries way below the wavelength of the light source used to create the patterns on a wafer. Starting at geometries such as 40nm, designers who never had to think about semiconductor manufacturing process-related issues were forced to consider complex physics, in addition to the geometric growth in data size during design implementation. That is a lot of learning to do in a short time for designers, and the pressure will continue. 28nm technology is around the corner and 20nm process will soon follow.
As the semiconductor industry is charging forward with its process technologies, the electronic design automation (EDA) industry is trying to keep in step with the process advances. While EDA tools have done a reasonably good job of keeping up, the recent trends in process technologies have created new needs, for instance, the need to move from a compute farm to a compute “ranch” for physical verification. And still runtimes take several hours, or even days. Most of these tools were architected using algorithms and concepts that were developed in the 1990s (some even in the 1980s) and are unable to meet the runtime and scalability needs for the advanced process technologies, today and tomorrow.
E-mail This Article | Printer-Friendly Page |
Related Articles
- Bridging the Gap between Pre-Silicon Verification and Post-Silicon Validation in Networking SoC designs
- Automated On-the-Fly Verification of Designs Using Detector-Based Methodology
- Test tools to empower engineers for PCIe 3.0 designs
- Power Aware Verification of ARM-Based Designs
- Using in-design physical verification to reduce tapeout schedules
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)