Attofarad accuracy for high-performance memory design
Claudia Relyea, Mentor Graphics Corp.
EETimes (3/30/2011 9:52 AM EDT)
Relieving the pain of parasitic extraction
The future is here: phone, web browser, email, photo and video, all in one device at your finger tips, simultaneously. The evolution of IC design is in part driven by the demand for more memory with higher performance. Advanced process technologies enable more functionality, higher performance, and portability in chip design through smaller device sizes (Figure 1). These innovations pose interesting design challenges, which include new parasitic extraction issues that are affecting nanometer memory designs.
E-mail This Article | Printer-Friendly Page |
|
Related Articles
- Optimizing high-performance CPUs, GPUs and DSPs? Use logic and memory IP - Part I
- High-yield, high-performance memory design
- High-Performance, High-Precision Memory Characterization
- Transactional Level Modeling (TLM) of a High-performance OCP Multi-channel SDRAM Memory Controller
- Infrastructure ASICs drive high-performance memory decisions
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)