Facilitating at-speed test at RTL (Part 2)
Dr. Ralph Marlett, Kiran Vittal, Atrenta Inc.
4/20/2011 2:15 AM EDT
Part 1 of this series discusses the problems with at-speed testing, and the various defect models and manufacturing test techniques. This part will tackle at-speed timing closure rules and at-speed coverage. It also looks into the at-speed coverage estimation and diagnosis of SpyGlass-DFT DSM.
The SpyGlass-DFT DSM product provides timing closure analysis and RTL testability for deep subµm (DSM) defects associated with at-speed testing. It is touted to provide accurate RTL fault coverage estimation for transition delay testing, together with diagnostics for low fault coverage, early in the design flow.

Figure 1: Complete RTL analysis solution for stuck-at and at-speed testing.
To access the full Design Article by Atrenta Inc. (in PDF Format), click here.
Read also:
Facilitating at-speed test at RTL (Part 1)
About the authors:
. Dr. Ralph Marlett, Product Director, Atrenta Inc.
. Kiran Vittal, Product Marketing Director, Atrenta Inc.
Courtesy of EE Times India
|
Related Articles
- Facilitating at-speed test at RTL (Part 1)
- Alternative NVM technologies require new test approaches, part 2
- How to raise the RTL abstraction level and design conciseness with SystemVerilog - Part 2
- Paving the way for the next generation audio codec for True Wireless Stereo (TWS) applications - PART 2 : Increasing play time
- Next Gen Scan Compression Technique to overcome Test challenges at Lower Technology Nodes (Part - I)
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |