Scaling a video on demand server
Early performance estimation is key to successful implementation
Illia Cremer, CoFluent Design
EETimes (4/27/2011 9:51 AM EDT)
Abstract
In a growing and more competitive video on demand (VoD) market, system designers face new challenges in VoD server infrastructures definition and sizing. Early performance estimation thanks to abstract modeling is a key enabler for providing best quality of service and compelling user experience.
This article illustrates how to model and simulate an example model of a RTP/RTSP video on demand server using the method, notations and tools provided by CoFluent Design.
The objective is to determine the client’s frame rate deviation and the average power consumption for different server configurations. The frame rate deviation is the difference between the expected theoretical frame rate and the actual frame rate of the video stream. It directly impacts the user’s watching experience and should be kept as much as possible close to zero.
The impact of different hardware elements of the server such as HDD type and server buffering is studied. The example also illustrates how to model multiple instances of the same function, and how to define an abstract network of computers.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Related Articles
- Polyphase Video Scaling in FPGAs
- Using vector processing for HD video scaling, de-interlacing, and image customization
- AI-driven SRAM demand needs integrated repair and security
- Applications And Operations of Video Analytics
- VESA Video Compression on MIPI DSI-2 Enables Next-Generation Display Applications
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow