Functional safety poses challenges for semiconductor design
Karl Greb (Texas Instruments) and Riccardo Mariani (Yogitech SpA)
5/2/2011 3:04 PM EDT
To manage systematic and random failures, vendors have applied functional safety techniques at the system level for decades. As the capability to integrate multiple system-level functions into a single component has increased, there’s been a desire to apply those same practices at the semiconductor component or even subcomponent level.
Although the state of the art in functional safety is not yet well aligned with the state of the art in semiconductors, recent work on the IEC 61508 second edition and ISO 26262 draft standards have brought improvements. Many challenges remain, however.
Texas Instruments and Yogitech, a company that verifies and designs mixed-signal system-on-chip solutions, are working together to solve the challenges in standards committees as well as on new TMS570 microcontroller designs. (See Figure 1 below for an example of current-generation designs.)
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Related Articles
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow