Time to exploit IDEs for hardware design and verification
Cristian Amitroaie, Amiq Consulting, Andrew Betts, an independent consultant
5/18/2011 10:26 AM EDT
Integrated Development Environments are solidly established in the software community. Eclipse, a major open source IDE, has been downloaded over 5 million times. Data published in 2008 by its rival, NetBeans, showed their IDE to be in use by over 2 million users worldwide. Commercial IDEs, such as Microsoft’s Visual Studio, are also popular.
The IDE’s advantages to software engineers are many, and most of them are relevant to engineers working on hardware verification. It is, after all, a software task. Languages used include C, C++ and SystemC, of course, but increasingly the dedicated verification languages e and SystemVerilog. Many aspects of hardware design are also language based, and can potentially benefit from the use of an IDE. Most digital designers use VHDL or Verilog, and Analog/Mixed-Signal (AMS) designers are increasingly taking up related languages such as VHDL-A and VerilogAMS.
By taking a closer look at the differences between the general software and the more specialized hardware verification communities, this article will attempt to explain the current growth and future prospects of IDEs in hardware verification. The implications for hardware design are also examined.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
Related Articles
- How to Save Time and Improve Communication Between Semiconductor Design and Verification Engineers
- Formal-based methodology cuts digital design IP verification time
- Applying Continuous Integration to Hardware Design and Verification
- How formal verification saves time in digital IP design
- Reduce SoC verification time through reuse in pre-silicon validation
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow