NVM OTP NeoBit in Maxchip (180nm, 160nm, 150nm, 110nm, 90nm, 80nm)
Making your application code multicore ready
Paul Stravers, Vector Fabrics
EETimes (7/25/2011 1:14 PM EDT)
In this product how-to article, Vector Fabrics’ Paul Stavers describes a more efficient way to parallelize code for embedded multicore designs illustrating the process using the company’s online tool to parallelize Google’s VP8 video decoder.
Many silicon vendors rely on multicore architectures to improve performance. However, some engineers might say that those vendors have not been able to deliver compilation tools that have kept pace with the architecture improvements. The tools that are available require both a good understanding of the application and a deep understanding of the target platform.
However, an alternative approach is possible. This article will highlight a way to parallelize complex applications in a short time span, without the need to understand neither the application nor the target platform.
This can be achieved with interactive mapping and partitioning design flow. The flow visualizes the application behavior and allows the user to interactively explore feasible multithreaded versions. The program semantics are guaranteed to be preserved under the proposed transformations.
In many cases the design of an embedded system starts with a software collection that has not yet been partitioned to match the multicore structure of the target hardware.
As a result, the software does not meet its performance requirements and hardware resources are left idle. To resolve this, an expert (or a team of experts) comes in to change the software so that it fits the target multicore structure.
E-mail This Article | Printer-Friendly Page |
Related Articles
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)