5V Library for Generic I/O and ESD Applications TSMC 12NM FFC/FFC+
Cache-Coherence Verification
Rajeev Ranjan, CTO, Jasper Design Automation
8/17/2011 11:38 AM EDT
As consumers, we place many demands on our personal electronics, especially mobile devices. We want them to perform all sorts of tasks efficiently, accurately, and with minimal power consumption. Complex embedded SoCs have largely enabled the functional capabilities of these devices. To ensure that these devices perform at a desired level to accomplish the tasks needed, today’s embedded SoCs must consist of high-performance, heterogeneous, and multi-processing agents. The presence of a large number of data processing agents sharing a memory resource on an SoC requires that the agents maintain some type of locally cached data to reduce the data transportation cost. This, in turn, leads to the requirement for cache coherency to allow agents to cache data during processing and then make it available to the next processing agent.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Related Articles
- EAVS - Electra IC Advanced Verification Suite for RISC-V Cores
- Hardware-Assisted Verification: The Real Story Behind Capacity
- How to Save Time and Improve Communication Between Semiconductor Design and Verification Engineers
- Early Interactive Short Isolation for Faster SoC Verification
- Certifying RISC-V: Industry Moves to Achieve RISC-V Core Quality
New Articles
- Beyond Limits: Unleashing the 10.7 Gbps LPDDR5X Subsystem
- How to Design Secure SoCs: Essential Security Features for Digital Designers
- System level on-chip monitoring and analytics with Tessent Embedded Analytics
- What tamper detection IP brings to SoC designs
- RISC-V in 2025: Progress, Challenges,and What's Next for Automotive & OpenHardware
Most Popular
- System Verilog Assertions Simplified
- Beyond Limits: Unleashing the 10.7 Gbps LPDDR5X Subsystem
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Optimizing Analog Layouts: Techniques for Effective Layout Matching
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)