Meet the SERDES challenge: Design a high-speed serial backplane
Michael Heimlich
EETimes (10/6/2011 9:47 AM EDT)
The benefit of having high-frequency design tools resident on a vector network analyzer (VNA) does not become obvious until the time comes to compare simulation to measurements. At this point, the advantage of a more streamlined work flow -- without the impediment of transferring data to a simulator running on a separate PC or workstation - becomes clear. To illustrate the benefit of such an
approach, this article follows the design flow for a high-speed serial backplane.
BACKGROUND: THE SERDES CHALLENGE
Increasing chip-to-chip, board-to-board, and system-to-system communications data rates have created the need for multi-gigabit asynchronous signaling schemes in which serializer/deserializer (SERDES) technology is used to format and transfer data. Analysts predict that SERDES I/O data rates will double every two to three years, so speeds in excess of 8Gb/s are already on the way and placing the SERDES design challenge clearly into the microwave domain. Consequently, designers familiar only with lower-speed buses will now be facing new physical and electrical design challenges.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
Related Articles
New Articles
- Beyond Limits: Unleashing the 10.7 Gbps LPDDR5X Subsystem
- How to Design Secure SoCs: Essential Security Features for Digital Designers
- System level on-chip monitoring and analytics with Tessent Embedded Analytics
- What tamper detection IP brings to SoC designs
- RISC-V in 2025: Progress, Challenges,and What's Next for Automotive & OpenHardware
Most Popular
- System Verilog Assertions Simplified
- Beyond Limits: Unleashing the 10.7 Gbps LPDDR5X Subsystem
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Design Rule Checks (DRC) - A Practical View for 28nm Technology
- How to Design Secure SoCs: Essential Security Features for Digital Designers