Argument for anti-fuse non-volatile memory in 28nm high-K metal gate
Update: Synopsys Expands DesignWare IP Portfolio with Acquisition of Kilopass Technology (Jan. 10, 2018)
Andre Hassan, Kilopass Technology Inc.
EETimes (10/15/2011 1:17 PM EDT)
With 28nm high-K metal Gate (HKMG) semiconductor production ramping in 2012, system-on-chip (SoC) designers are presented with the silicon real estate and economic incentive to integrate more functionality on-chip. One function that continues to be challenging for on-chip integration is non-volatile memory (NVM) despite its many advantages. At smaller process geometries, especially 28nm HKMG, the challenges to integrating NVM such as flash, pseudo flash, and e-fuse are effectively addressed with an anti-fuse solution.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Related Articles
- The benefit of non-volatile memory (NVM) for edge AI
- Anti-fuse memory provides robust, secure NVM option
- The Answer to Non-Volatile Memory Security Issues at Advanced Nodes: Go Volatile!
- Improving reliability of non-volatile memory systems
- Achieving High Performance Non-Volatile Memory Access Through "Execute-In-Place" Feature
New Articles
- Understanding MACsec and Its Integration
- Discover new Tessent UltraSight-V from Siemens EDA, and accelerate your RISC-V development.
- The Critical Factors of a High-performance Audio Codec - What Chip Designers Need to Know
- Density Management in Analog Layout Design: Addressing Issues and Ensuring Consistency
- Nexus: A Lightweight and Scalable Multi-Agent Framework for Complex Tasks Automation
Most Popular
- System Verilog Assertions Simplified
- Synthesis Methodology & Netlist Qualification
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)