Multi-Protocol Engine with Classifier, Look-Aside, 5-10 Gbps
Big.LITTLE processing with ARM Cortex-A15 & Cortex-A7
Peter Greenhalgh, ARM
EETimes (10/24/2011 4:33 PM EDT)
This white paper presents the rationale and design behind the first big.LITTLE system from ARM based on the high-performance Cortex-A15 processor, the energy efficient Cortex-A7 processor, the coherent CCI-400 interconnect and supporting IP.
The range of performance being demanded from modern, high-performance, mobile platforms is unprecedented. Users require platforms to be accomplished at high processing intensity tasks such as gaming and web browsing while providing long battery life for low processing intensity tasks such as texting, e-mail and audio.
In the first big.LITTLE system from ARM a ‘big’ ARM Cortex-A15 processor is paired with a ‘LITTLE’ Cortex-A7 processor to create a system that can accomplish both high intensity and low intensity tasks in the most energy efficient manner. By coherently connecting the Cortex-A15 and Cortex-A7 processors via the CCI-400 coherent interconnect the system is flexible enough to support a variety of big.LITTLE use models, which can be tailored to the processing requirements of the tasks.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Arm Ltd Hot IP
Related Articles
New Articles
- Beyond Limits: Unleashing the 10.7 Gbps LPDDR5X Subsystem
- How to Design Secure SoCs: Essential Security Features for Digital Designers
- System level on-chip monitoring and analytics with Tessent Embedded Analytics
- What tamper detection IP brings to SoC designs
- RISC-V in 2025: Progress, Challenges,and What's Next for Automotive & OpenHardware
Most Popular
- System Verilog Assertions Simplified
- Beyond Limits: Unleashing the 10.7 Gbps LPDDR5X Subsystem
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Design Rule Checks (DRC) - A Practical View for 28nm Technology
- How to Design Secure SoCs: Essential Security Features for Digital Designers