Bluetooth low energy v6.0 Baseband Controller, Protocol Software Stack and Profiles IP
A new approach to hardware design project management
Simon Butler, Methodics
EETimes (9/20/2011 3:44 PM EDT)
Introduction
Data management has always been a pesky ‘background’ problem for IC designers, who usually found ways to stitch together reasonably effective solutions. In the beginning there were files and directories, and developers would version data by maintaining copies with unique names. Later, this was replaced by RCS/CVS simplistic file versioning. Over the years, next-generation DM (data management) and CM (configuration management) tools such as Perforce, Subversion, ClearCase, and Git have emerged that improve performance and reliability. These tools added a layer of abstraction over the file versioning problem.
As organizations evolved and (with Moore’s Law) designs exploded in complexity and size, many were forced to resort to multi-site design. File-counts grew, file-sizes expanded, and multiple DM repositories and even multiple DM tools were often used on a single project. Today, many design organizations struggle to keep project-data organized properly and communicate change effectively. Finally, exacerbating the situation, companies suffered from poor or no permission management strategy, bad performance, inconsistent data management systems, and spiraling disk/network resource requirements. There was no single way to control, measure, or manage the situation.
E-mail This Article | Printer-Friendly Page |
|
Related Articles
- Improve FPGA project management/test by eschewing the IDE
- Single core to multicore: Addressing the system design paradigm shift with project management and software instrumentation
- Hardware Configuration Management and why it's different than Software Configuration Management
- Multisite, collaborative hardware design calls for HCM
- Tips to leveraging pre-integrated systems: How to get your application to market in 12 months
New Articles
- Accelerating RISC-V development with Tessent UltraSight-V
- Automotive Ethernet Security Using MACsec
- What is JESD204C? A quick glance at the standard
- Optimizing Power Efficiency in SOC with PVT Sensor-Assisted DVFS Technology
- Bandgap Reference (BGR) Circuit Design and Transient Analysis in 90nm VLSI Technology
Most Popular
- System Verilog Assertions Simplified
- Accelerating RISC-V development with Tessent UltraSight-V
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Understanding Logic Equivalence Check (LEC) Flow and Its Challenges and Proposed Solution
- Design Rule Checks (DRC) - A Practical View for 28nm Technology