Hardware/software design requirements planning: Part 3 - Performance requirements analysis
Jeffrey O. Grady, JOG Systems Engineering, Inc.
EETimes (11/8/2011 9:59 PM EST)
Performance requirements define what the system or item must do and how well it must do those things. Precursors of performance requirements take the form of function statements or functional requirements (quantified function statements). These should be determined as a result of a functional analysis process that decomposes the customer need as noted earlier using an appropriate flow diagramming technique.
Many organizations find that they fail to develop the requirements needed by the design community in a timely way. They keep repeating the same cycle on each program and fail to understand their problem.
This cycle consists of receipt of the customer’s requirements or approval of their requirements in a specification created by the contractor, followed by a phony war on requirements where the systems people revert to documentation specialists and the design community creates a drawing release schedule in response to management demand for progress. As the design becomes firm, the design people prepare an in-house requirements document that essentially characterizes the preexisting design.
E-mail This Article | Printer-Friendly Page |
Related Articles
- Hardware/software design requirements planning - Part 2: Decomposition using structured analysis
- Hardware/software design requirements planning: Part 4 - Computer software approaches
- Hardware/software design requirements analysis: Part 1 - Laying the ground work
- How to use UML in your SoC hardware/software design: Part 3
- Dealing with automotive software complexity with virtual prototyping - Part 3: Embedded software testing
New Articles
- Accelerating RISC-V development with Tessent UltraSight-V
- Automotive Ethernet Security Using MACsec
- What is JESD204C? A quick glance at the standard
- Optimizing Power Efficiency in SOC with PVT Sensor-Assisted DVFS Technology
- Bandgap Reference (BGR) Circuit Design and Transient Analysis in 90nm VLSI Technology
Most Popular
- Accelerating RISC-V development with Tessent UltraSight-V
- System Verilog Assertions Simplified
- Synthesis Methodology & Netlist Qualification
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)