Transfer from FPGAs for prototype to ASICs for production
Terry Danzer and Cale Entzel, ON Semiconductor
EETimes (11/28/2011 1:38 PM EST)
Field-programmable gate arrays (FPGAs) are a valuable technology for designing and prototyping digital logic into today’s applications. However, high FPGA unit cost can sometimes prohibit higher volume production. Several alternatives exist for transferring a digital design, implemented with an FPGA, into higher-volume production. Low-cost solutions such as structured application-specific integrated circuits (ASICs), cell-based ICs, and gate arrays offer higher performance, lower power consumption, higher levels of integration, and better response to radiation effects. The idea of migrating an FPGA design into an ASIC can be overwhelming to a design team, but careful planning and partnering with an experienced ASIC vendor can significantly ease the process.
Designing a new product in an FPGA allows for design modifications to be made quickly in hardware. Once the design code is stable and the product is ready for production, a migration from an FPGA to an ASIC can cut the production unit cost by up to 50%. The low non-recurring engineering (NRE) charges associated with a mid-range ASIC solution coupled with a much lower unit price point make this strategy a powerful tool in achieving low overall expense, giving users a competitive cost advantage in the market.
E-mail This Article | Printer-Friendly Page |
|
Related Articles
- FPGAs for prototyping - ASICs for production
- Implementing floating-point algorithms in FPGAs or ASICs
- Asynchronous reset synchronization and distribution - ASICs and FPGAs
- Single event effects (SEEs) in FPGAs, ASICs, and processors, part I: impact and analysis
- How to implement *All-Digital* analog-to-digital converters in FPGAs and ASICs
New Articles
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- Synthesis Methodology & Netlist Qualification
- Streamlining SoC Design with IDS-Integrate™