FPGAs unleash potential of Flash memory for enterprise applications
David McIntyre, Altera Corporation
EETimes (3/16/2012 10:00 AM EDT)
Enterprise storage subsystems today are undergoing an essential transformation. The sheer volume of enterprise data and transactions is increasing by as much as 50-60% per year. The rapid proliferation of cloud computing and virtualization as a means to more efficiently manage these burgeoning data workloads has spawned explosive growth in the number and size of data centers. Along with the exponential growth in enterprise storage comes an imperative to improve memory subsystem performance capacity and value.
System administrators are finding that conventional storage architectures, which rely heavily on hard disk media, lack the performance to meet the demands of today’s workloads. Application architects are responding by adopting a holistic approach to memory architecture that combines conventional storage media with a new entrant in the enterprise space, flash memory. Long a preferred memory medium for consumer devices, NAND flash memory offers 10-100X performance improvement over that of hard disk drives (HDDs) for enterprise applications. Flash is also the most cost-effective non-volatile storage medium for frequently used data and applications. By using flash memory arrays, enterprises can dramatically reduce storage footprint, CPU and software licenses, and consequently, data center power, space and operation cost.
E-mail This Article | Printer-Friendly Page |
|
Altera Hot IP
Related Articles
New Articles
- Accelerating RISC-V development with Tessent UltraSight-V
- Automotive Ethernet Security Using MACsec
- What is JESD204C? A quick glance at the standard
- Optimizing Power Efficiency in SOC with PVT Sensor-Assisted DVFS Technology
- Bandgap Reference (BGR) Circuit Design and Transient Analysis in 90nm VLSI Technology
Most Popular
- System Verilog Assertions Simplified
- Accelerating RISC-V development with Tessent UltraSight-V
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Understanding Logic Equivalence Check (LEC) Flow and Its Challenges and Proposed Solution
- Design Rule Checks (DRC) - A Practical View for 28nm Technology