Boost MCU security AND performance with hardware accelerated crypto
Carlos Betancourt and Greg Turner, Texas Instruments
EETimes (4/11/2012 1:19 AM EDT)
In this Product How-To article, TI’s Carlos Betancourt and Greg Turner describe how the hardware accelerated cryptography modules built in to the company’s ARM-based Sitara processor family can be used to accelerate compute-intensive cryptographic algorithms and offload those tasks from the ARM core which can then devote the additional headroom to performance of real-time deterministic control functions.
In 2010, an estimated 8.6 million households had at least one person who experienced identity theft victimization, according to the Bureau of Justice Statistics. The list of security risks continues to grow when adding hacking, phishing, malware and viruses. In today’s hyper-connected world, the opportunities to be victimized by a scam or theft are a mouse click or a tap on a touch screen away. Important personal and confidential information is placed on the Internet and sent across wireless connections constantly by millions of people every day.
From personal computers to wireless mobile devices and even embedded processors deployed in a myriad of end user applications such as industrial controls, residential automation and home entertainment centers, technology has enhanced user experiences. It has also heightened the issue of security.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Related Articles
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- An Outline of the Semiconductor Chip Design Flow
- Design Rule Checks (DRC) - A Practical View for 28nm Technology
- Synthesis Methodology & Netlist Qualification